organic compounds

Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

3,4-Bis(4-bromophenyl)-2,5-diphenylcyclopenta-2,4-dienone

Anke Schwarzer and Edwin Weber*

Institut für Organische Chemie, TU Bergakademie Freiberg, Leipziger Strasse 29, D-09596 Freiberg/Sachsen, Germany Correspondence e-mail: edwin.weber@chemie.tu-freiberg.de

Received 2 May 2007; accepted 22 July 2007

Key indicators: single-crystal X-ray study; T = 93 K; mean σ (C–C) = 0.003 Å; R factor = 0.019; wR factor = 0.047; data-to-parameter ratio = 13.8.

The title compound, $C_{29}H_{18}Br_2O$, crystallizes as black-violet plates. The molecule displays a paddle-wheel conformation and the crystal packing is stabilized by $C-H\cdots\pi$ ($C-H\cdots\pi$ distances in the range 2.7–2.9 Å) and $C-H\cdots$ Br contacts.

Related literature

The paddle-wheel conformation is also a typical feature of the parent substance tetraphenylcyclone (Barnes *et al.*, 1991; Alvarez-Toledano *et al.*, 1997) and the related compound phencyclone (Ruffani *et al.*, 2006), both involving $C-H\cdots\pi$ contacts in the crystal packing, similar to the title compound. For related literature, see: Dilthey *et al.* (1935).

Experimental

Crystal data

 $C_{29}H_{18}Br_{2}O$ $M_{r} = 542.25$ Monoclinic, $P2_{1}/c$ a = 10.0677 (4) Å b = 9.6526 (4) Å c = 23.6791 (9) Å $\beta = 99.193 (2)^{\circ}$

Data collection

Bruker KappaCCD APEXII areadetector diffractometer Absorption correction: multi-scan (*SADABS*; Sheldrick, 2004) $T_{min} = 0.534$, $T_{max} = 0.564$ (expected range = 0.496–0.524)

Refinement

 $R[F^2 > 2\sigma(F^2)] = 0.019$ $wR(F^2) = 0.047$ S = 1.063999 reflections

Table 1Hydrogen-bond geometry (Å, °).

$D - H \cdots A$	D-H	$H \cdots A$	$D \cdots A$	$D - \mathbf{H} \cdots \mathbf{A}$
C28-H28···Br1 ⁱ	0.95	2.87	3.6920 (18)	146
$C22 - H22 \cdot \cdot \cdot Br2^{ii}$	0.95	2.97	3.6386 (19)	129
C15−H15···Br1 ⁱⁱⁱ	0.95	3.03	3.8556 (18)	146
Symmetry codes: -x + 1, -y + 1, -z + 1	(i) <i>x</i>	+1, y, z; (ii)	$-x+2, y-\frac{1}{2},$	$-z + \frac{1}{2};$ (iii)

V = 2271.57 (16) Å³

 $0.20 \times 0.19 \times 0.18 \text{ mm}$

21955 measured reflections

3999 independent reflections

3578 reflections with $I > 2\sigma(I)$

H-atom parameters constrained

Mo $K\alpha$ radiation

 $\mu = 3.59 \text{ mm}^-$

T = 93 (2) K

 $R_{\rm int} = 0.024$

289 parameters

 $\Delta \rho_{\text{max}} = 0.34 \text{ e } \text{\AA}^{-3}$ $\Delta \rho_{\text{min}} = -0.26 \text{ e } \text{\AA}^{-3}$

Z = 4

Data collection: *APEX2* (Bruker, 2004); cell refinement: *SAINT* (Bruker, 2004); data reduction: *SAINT*; program(s) used to solve structure: *SHELXTL* (Sheldrick, 2001); program(s) used to refine structure: *SHELXTL*; molecular graphics: *SHELXTL*; software used to prepare material for publication: *SHELXTL*.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: KJ2060).

References

Alvarez-Toledano, C., Baldovino, O., Espinoza, G., Toscano, R. A., Gutierrez-Perez, R. & Garcia-Mellado, O. (1997). J. Organomet. Chem. 540, 41–49.

Barnes, J. C., Horspool, W. M. & Mackie, F. I. (1991). Acta Cryst. C47, 164–168.
Bruker (2004). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.

Dilthey, W., ter Horst, I. & Schommer, W. (1935). J. Prakt. Chem. 143, 189–210. Ruffani, A., Schwarzer, A. & Weber, E. (2006). Acta Cryst. E62, 02281–02282. Sheldrick, G. M. (2001). SHELXTL. Version 5.0. Bruker AXS Inc., Madison,

Wisconsin, USA.

Sheldrick, G. M. (2004). SADABS. University of Göttingen, Germany.

supplementary materials

Acta Cryst. (2007). E63, o3966 [doi:10.1107/81600536807035702]

3,4-Bis(4-bromophenyl)-2,5-diphenylcyclopenta-2,4-dienone

A. Schwarzer and E. Weber

Comment

The molecular geometry is best described by a paddle-wheel fashion, due to steric hindrance of the neighbouring aryl rings. The crystal packing is dominated by intramolecular C— $H^{...}\pi$ interactions. These intermolecular contacts, where π is an aromatic-ring centroid, with $H^{...}\pi$ distances ranging from 2.67 to 2.90 Å give rise to the formation of molecular chains extended along the *a* and *b* axis. Furthermore, unusual C— $H^{...}Br$ contacts forming a three-dimensional network can be observed (Figure 2).

Experimental

The title compound was synthesized according to the procedure described by Dilthey *et al.* (1935) from 1,2-bis(4-bro-mophenyl) ethane-1,2-dione, dibenzyl ketone and finely powdered potassium hydroxide in ethanol. Recrystallization from ethyl acetate yielded 72% dark-violet crystals.

Refinement

The H atoms were positioned geometrically and allowed to ride on their parent atoms, with C—H = 0.95 Å, and U_{iso} = 1.2–1.5 U_{eq} (parent atom).

Figures

Fig. 1. Perspective view of (I), showing 50% probability displacement ellipsoids for the non-H atoms.

Fig. 2. Packing diagram of (I), viewed down the b axis, with C—H…Br contacts as broken lines.

3,4-Bis(4-bromophenyl)-2,5-diphenylcyclopenta-2,4-dienone

Crystal data C₂₉H₁₈Br₂O

 $F_{000} = 1080$

$M_r = 542.25$	$D_{\rm x} = 1.586 {\rm ~Mg} {\rm ~m}^{-3}$
Monoclinic, $P2_1/c$	Mo $K\alpha$ radiation $\lambda = 0.71073$ Å
a = 10.0677 (4) Å	Cell parameters from 5575 reflections
b = 9.6526 (4) Å	$\theta = 2.5 - 28.7^{\circ}$
c = 23.6791 (9) Å	$\mu = 3.59 \text{ mm}^{-1}$
$\beta = 99.193 \ (2)^{\circ}$	T = 93 (2) K
$V = 2271.57 (16) \text{ Å}^3$	Plate, dark-violet
Z = 4	$0.20\times0.19\times0.18~mm$

Data collection

Bruker KappaCCD APEXII area-detector diffractometer	3999 independent reflections
Radiation source: fine-focus sealed tube	3578 reflections with $I > 2\sigma(I)$
Monochromator: graphite	$R_{\rm int} = 0.024$
T = 93(2) K	$\theta_{\text{max}} = 25.0^{\circ}$
ϕ and ω scans	$\theta_{\min} = 1.7^{\circ}$
Absorption correction: multi-scan (SADABS; Sheldrick, 2004)	$h = -11 \rightarrow 11$
$T_{\min} = 0.534, T_{\max} = 0.564$	$k = -11 \rightarrow 11$
21955 measured reflections	<i>l</i> = −23→28

Refinement

Refinement on F^2	Secondary atom site location: difference Fourier map
Least-squares matrix: full	Hydrogen site location: inferred from neighbouring sites
$R[F^2 > 2\sigma(F^2)] = 0.019$	H-atom parameters constrained
$wR(F^2) = 0.047$	$w = 1/[\sigma^2(F_o^2) + (0.0196P)^2 + 1.357P]$ where $P = (F_o^2 + 2F_c^2)/3$
S = 1.06	$(\Delta/\sigma)_{\rm max} = 0.002$
3999 reflections	$\Delta \rho_{max} = 0.34 \text{ e} \text{ Å}^{-3}$
289 parameters	$\Delta \rho_{min} = -0.26 \text{ e } \text{\AA}^{-3}$
Primary atom site location: structure-invariant direct methods	Extinction correction: none

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and goodness of fit S are based on F^2 , conventional *R*-factors *R* are based on F, with F set to zero for negative F^2 . The threshold expression of $F^2 > 2 \text{sigma}(F^2)$ is used only for calculating *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on F, and R– factors based on ALL data will be even larger.

	x	у	Ζ	$U_{\rm iso}$ */ $U_{\rm eq}$
01	1.11380 (13)	0.81448 (14)	0.50405 (5)	0.0234 (3)
Br1	0.453140 (18)	0.255240 (19)	0.278725 (8)	0.02000 (6)
Br2	1.088680 (19)	0.50624 (2)	0.125864 (7)	0.02318 (6)
C1	1.06412 (18)	0.74769 (18)	0.46290 (7)	0.0171 (4)
C2	0.92780 (18)	0.67815 (18)	0.45385 (7)	0.0156 (4)
C3	0.91426 (18)	0.61459 (18)	0.40263 (7)	0.0152 (4)
C4	1.03677 (18)	0.64253 (18)	0.37486 (7)	0.0147 (4)
C5	1.12617 (18)	0.71972 (18)	0.40982 (7)	0.0155 (4)
C6	1.25237 (18)	0.78587 (18)	0.39981 (7)	0.0156 (4)
C7	1.26415 (19)	0.84047 (18)	0.34603 (8)	0.0173 (4)
H7	1.1912	0.8320	0.3154	0.021*
C8	1.38078 (19)	0.90662 (19)	0.33701 (8)	0.0203 (4)
H8	1.3872	0.9434	0.3003	0.024*
C9	1.48880 (19)	0.91968 (19)	0.38138 (8)	0.0220 (4)
Н9	1.5690	0.9647	0.3750	0.026*
C10	1.47859 (19)	0.86662 (19)	0.43476 (8)	0.0217 (4)
H10	1.5521	0.8753	0.4651	0.026*
C11	1.36124 (19)	0.80057 (19)	0.44427 (8)	0.0187 (4)
H11	1.3550	0.7652	0.4812	0.022*
C12	0.83491 (18)	0.68419 (19)	0.49612 (7)	0.0154 (4)
C13	0.82388 (18)	0.80643 (19)	0.52658 (7)	0.0178 (4)
H13	0.8795	0.8833	0.5213	0.021*
C14	0.73240 (19)	0.8167 (2)	0.56443 (8)	0.0203 (4)
H14	0.7259	0.9002	0.5850	0.024*
C15	0.65065 (19)	0.7056 (2)	0.57225 (8)	0.0217 (4)
H15	0.5871	0.7133	0.5977	0.026*
C16	0.6614 (2)	0.5828 (2)	0.54287 (8)	0.0220 (4)
H16	0.6057	0.5062	0.5484	0.026*
C17	0.75368 (19)	0.57192 (19)	0.50535 (7)	0.0186 (4)
H17	0.7616	0.4872	0.4857	0.022*
C18	0.80114 (18)	0.52985 (18)	0.37389 (7)	0.0142 (4)
C19	0.66960 (18)	0.58029 (18)	0.36437 (7)	0.0162 (4)
H19	0.6517	0.6704	0.3774	0.019*
C20	0.56437 (18)	0.50109 (19)	0.33620 (8)	0.0173 (4)
H20	0.4751	0.5363	0.3296	0.021*
C21	0.59257 (18)	0.36977 (18)	0.31805 (7)	0.0153 (4)
C22	0.72124 (19)	0.31713 (19)	0.32679 (8)	0.0217 (4)
H22	0.7383	0.2267	0.3138	0.026*
C23	0.82536 (19)	0.39715 (19)	0.35460 (8)	0.0211 (4)
H23	0.9144	0.3614	0.3606	0.025*
C24	1.04490 (18)	0.59994 (18)	0.31555 (7)	0.0147 (4)
C25	0.94423 (18)	0.63988 (19)	0.27082 (7)	0.0173 (4)
H25	0.8671	0.6873	0.2793	0.021*
C26	0.95508 (18)	0.61145 (19)	0.21434 (8)	0.0183 (4)
H26	0.8871	0.6404	0.1841	0.022*

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (\hat{A}^2)

supplementary materials

C27	1.06679 (19)	0.54023 (18)	0.20290 (7)	0.0166 (4)
C28	1.16667 (18)	0.49671 (18)	0.24641 (8)	0.0171 (4)
H28	1.2422	0.4469	0.2377	0.021*
C29	1.15549 (18)	0.52640 (18)	0.30265 (8)	0.0164 (4)
H29	1.2236	0.4965	0.3327	0.020*

Atomic displacement parameters $(Å^2)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
01	0.0216 (7)	0.0311 (8)	0.0170 (7)	-0.0036 (6)	0.0015 (6)	-0.0078 (6)
Br1	0.01865 (11)	0.01994 (11)	0.02038 (10)	-0.00453 (8)	-0.00005 (7)	-0.00154 (7)
Br2	0.02779 (12)	0.02861 (11)	0.01347 (10)	-0.00723 (9)	0.00428 (8)	-0.00567 (8)
C1	0.0184 (10)	0.0169 (9)	0.0155 (9)	0.0032 (8)	0.0011 (8)	0.0006 (8)
C2	0.0164 (10)	0.0137 (9)	0.0162 (9)	0.0014 (8)	0.0011 (7)	0.0006 (7)
C3	0.0160 (10)	0.0143 (9)	0.0154 (9)	0.0033 (7)	0.0022 (7)	0.0019 (7)
C4	0.0150 (9)	0.0132 (9)	0.0155 (9)	0.0035 (7)	0.0013 (7)	0.0008 (7)
C5	0.0153 (9)	0.0164 (9)	0.0144 (9)	0.0035 (7)	0.0010 (7)	0.0017 (7)
C6	0.0151 (10)	0.0145 (9)	0.0174 (9)	0.0028 (7)	0.0029 (7)	-0.0028 (7)
C7	0.0199 (10)	0.0149 (9)	0.0169 (9)	0.0012 (8)	0.0023 (7)	-0.0028 (7)
C8	0.0268 (11)	0.0171 (9)	0.0187 (9)	0.0013 (8)	0.0091 (8)	-0.0024 (8)
C9	0.0176 (10)	0.0192 (10)	0.0311 (11)	-0.0013 (8)	0.0096 (8)	-0.0034 (8)
C10	0.0161 (10)	0.0218 (10)	0.0261 (10)	0.0027 (8)	-0.0001 (8)	-0.0042 (8)
C11	0.0198 (10)	0.0183 (9)	0.0180 (9)	0.0021 (8)	0.0030 (8)	0.0000 (7)
C12	0.0147 (9)	0.0197 (9)	0.0111 (8)	0.0032 (8)	-0.0006 (7)	0.0005 (7)
C13	0.0165 (10)	0.0193 (9)	0.0168 (9)	-0.0010 (8)	0.0002 (7)	-0.0007 (7)
C14	0.0212 (10)	0.0239 (10)	0.0148 (9)	0.0049 (8)	0.0003 (8)	-0.0040 (8)
C15	0.0201 (10)	0.0320 (11)	0.0138 (9)	0.0041 (9)	0.0052 (8)	0.0026 (8)
C16	0.0247 (11)	0.0247 (10)	0.0167 (9)	-0.0027 (9)	0.0039 (8)	0.0053 (8)
C17	0.0249 (11)	0.0167 (9)	0.0140 (9)	0.0025 (8)	0.0026 (8)	0.0008 (7)
C18	0.0168 (10)	0.0149 (9)	0.0114 (9)	-0.0007 (7)	0.0033 (7)	0.0011 (7)
C19	0.0200 (10)	0.0138 (9)	0.0155 (9)	0.0021 (8)	0.0049 (7)	-0.0012 (7)
C20	0.0142 (9)	0.0202 (10)	0.0180 (9)	0.0024 (8)	0.0037 (7)	0.0028 (7)
C21	0.0165 (10)	0.0165 (9)	0.0127 (9)	-0.0046 (8)	0.0013 (7)	0.0006 (7)
C22	0.0224 (11)	0.0154 (10)	0.0267 (10)	0.0025 (8)	0.0025 (8)	-0.0055 (8)
C23	0.0139 (10)	0.0204 (10)	0.0282 (11)	0.0042 (8)	0.0013 (8)	-0.0031 (8)
C24	0.0156 (9)	0.0133 (9)	0.0149 (9)	-0.0023 (7)	0.0018 (7)	-0.0008 (7)
C25	0.0157 (10)	0.0171 (9)	0.0192 (9)	0.0011 (8)	0.0029 (7)	-0.0004 (7)
C26	0.0168 (10)	0.0194 (10)	0.0169 (9)	-0.0025 (8)	-0.0027 (8)	0.0019 (7)
C27	0.0220 (10)	0.0147 (9)	0.0132 (9)	-0.0066 (8)	0.0036 (7)	-0.0025 (7)
C28	0.0164 (10)	0.0154 (9)	0.0205 (10)	-0.0004 (8)	0.0054 (8)	-0.0012 (7)
C29	0.0160 (10)	0.0159 (9)	0.0163 (9)	0.0001 (8)	-0.0010 (7)	0.0002 (7)

Geometric parameters (Å, °)

O1—C1	1.208 (2)	C14—C15	1.382 (3)
Br1—C21	1.9084 (17)	C14—H14	0.9500
Br2—C27	1.9006 (17)	C15—C16	1.387 (3)
C1—C2	1.512 (3)	C15—H15	0.9500
C1—C5	1.514 (2)	C16—C17	1.388 (3)

C2—C3	1.347 (2)	C16—H16	0.9500
C2—C12	1.476 (2)	C17—H17	0.9500
C3—C18	1.477 (2)	C18—C23	1.394 (3)
C3—C4	1.512 (2)	C18—C19	1.395 (3)
C4—C5	1.346 (3)	C19—C20	1.388 (3)
C4—C24	1.478 (2)	C19—H19	0.9500
C5—C6	1.475 (3)	C20—C21	1.382 (3)
C6—C11	1.400 (3)	C20—H20	0.9500
C6—C7	1.401 (2)	C21—C22	1.376 (3)
С7—С8	1.383 (3)	C22—C23	1.381 (3)
С7—Н7	0.9500	С22—Н22	0.9500
C8—C9	1.392 (3)	С23—Н23	0.9500
C8—H8	0.9500	C24—C29	1.395 (3)
C9—C10	1.383 (3)	C24—C25	1.398 (2)
С9—Н9	0.9500	C25—C26	1.386 (3)
C10-C11	1.392 (3)	С25—Н25	0.9500
C10—H10	0.9500	C26—C27	1.381 (3)
C11—H11	0.9500	C26—H26	0.9500
C12—C17	1.396 (3)	C27—C28	1.385 (3)
C12—C13	1.397 (3)	C28—C29	1.384 (3)
C13—C14	1.388 (3)	C28—H28	0.9500
С13—Н13	0.9500	С29—Н29	0.9500
O1—C1—C2	126.91 (16)	C16—C15—H15	120.0
O1—C1—C5	126.30 (17)	C15—C16—C17	119.96 (18)
C2—C1—C5	106.78 (15)	C15—C16—H16	120.0
C3—C2—C12	130.15 (17)	С17—С16—Н16	120.0
C3—C2—C1	106.79 (15)	C16—C17—C12	120.68 (17)
C12—C2—C1	123.06 (15)	С16—С17—Н17	119.7
C2—C3—C18	128.82 (16)	С12—С17—Н17	119.7
C2—C3—C4	109.77 (16)	C23—C18—C19	118.60 (16)
C18—C3—C4	121.41 (15)	C23—C18—C3	119.83 (16)
C5—C4—C24	127.24 (16)	C19—C18—C3	121.56 (16)
C5—C4—C3	110.06 (15)	C20—C19—C18	121.17 (16)
C24—C4—C3	122.44 (15)	С20—С19—Н19	119.4
C4—C5—C6	130.49 (16)	C18—C19—H19	119.4
C4—C5—C1	106.56 (15)	C21—C20—C19	118.40 (17)
C6—C5—C1	122.44 (15)	C21—C20—H20	120.8
C11—C6—C7	118.40 (17)	C19—C20—H20	120.8
C11—C6—C5	120.93 (16)	C22—C21—C20	121.80 (17)
C7—C6—C5	120.62 (16)	C22—C21—Br1	117.45 (13)
C8—C7—C6	120.76 (17)	C20—C21—Br1	120.75 (14)
С8—С7—Н7	119.6	C21—C22—C23	119.32 (17)
С6—С7—Н7	119.6	C21—C22—H22	120.3
C7—C8—C9	120.38 (18)	C23—C22—H22	120.3
С7—С8—Н8	119.8	C22—C23—C18	120.71 (17)
С9—С8—Н8	119.8	С22—С23—Н23	119.6
C10—C9—C8	119.55 (18)	C18—C23—H23	119.6
С10—С9—Н9	120.2	C29—C24—C25	118.80 (16)
С8—С9—Н9	120.2	C29—C24—C4	121.12 (16)

supplementary materials

C9—C10—C11	120.43 (18)	C25—C24—C4	119.98 (16)
С9—С10—Н10	119.8	C26—C25—C24	121.12 (17)
C11—C10—H10	119.8	С26—С25—Н25	119.4
C10-C11-C6	120.49 (17)	С24—С25—Н25	119.4
C10-C11-H11	119.8	C27—C26—C25	118.67 (17)
C6—C11—H11	119.8	С27—С26—Н26	120.7
C17—C12—C13	118.57 (16)	С25—С26—Н26	120.7
C17—C12—C2	121.74 (16)	C26—C27—C28	121.49 (16)
C13—C12—C2	119.66 (16)	C26—C27—Br2	119.80 (14)
C14—C13—C12	120.64 (17)	C28—C27—Br2	118.67 (14)
C14—C13—H13	119.7	C29—C28—C27	119.46 (17)
С12—С13—Н13	119.7	C29—C28—H28	120.3
C15—C14—C13	120.14 (17)	C27—C28—H28	120.3
C15—C14—H14	119.9	C28—C29—C24	120.42 (17)
C13—C14—H14	119.9	С28—С29—Н29	119.8
C14—C15—C16	119.99 (17)	С24—С29—Н29	119.8
C14—C15—H15	120.0		
O1—C1—C2—C3	-179.45 (18)	C17—C12—C13—C14	-1.1 (3)
C5—C1—C2—C3	1.50 (19)	C2-C12-C13-C14	176.79 (17)
O1—C1—C2—C12	0.1 (3)	C12—C13—C14—C15	-0.2 (3)
C5-C1-C2-C12	-178.90 (15)	C13—C14—C15—C16	1.0 (3)
C12—C2—C3—C18	-0.8 (3)	C14—C15—C16—C17	-0.4 (3)
C1—C2—C3—C18	178.75 (17)	C15—C16—C17—C12	-0.9 (3)
C12—C2—C3—C4	178.56 (17)	C13—C12—C17—C16	1.7 (3)
C1—C2—C3—C4	-1.88 (19)	C2-C12-C17-C16	-176.19 (17)
C2—C3—C4—C5	1.7 (2)	C2—C3—C18—C23	-126.7 (2)
C18—C3—C4—C5	-178.89 (16)	C4—C3—C18—C23	54.0 (2)
C2—C3—C4—C24	-172.90 (16)	C2—C3—C18—C19	54.6 (3)
C18—C3—C4—C24	6.5 (2)	C4—C3—C18—C19	-124.71 (18)
C24—C4—C5—C6	1.8 (3)	C23—C18—C19—C20	-0.2 (3)
C3—C4—C5—C6	-172.48 (17)	C3—C18—C19—C20	178.54 (16)
C24—C4—C5—C1	173.62 (16)	C18—C19—C20—C21	0.5 (3)
C3—C4—C5—C1	-0.63 (19)	C19—C20—C21—C22	-0.5 (3)
O1—C1—C5—C4	-179.53 (18)	C19—C20—C21—Br1	-179.71 (13)
C2—C1—C5—C4	-0.47 (19)	C20—C21—C22—C23	0.2 (3)
O1—C1—C5—C6	-6.9 (3)	Br1—C21—C22—C23	179.40 (14)
C2—C1—C5—C6	172.18 (16)	C21—C22—C23—C18	0.2 (3)
C4—C5—C6—C11	-147.57 (19)	C19—C18—C23—C22	-0.2 (3)
C1—C5—C6—C11	41.7 (3)	C3—C18—C23—C22	-178.92 (17)
C4—C5—C6—C7	35.0 (3)	C5—C4—C24—C29	56.6 (3)
C1—C5—C6—C7	-135.76 (18)	C3—C4—C24—C29	-129.80 (18)
C11—C6—C7—C8	0.3 (3)	C5-C4-C24-C25	-119.9 (2)
C5—C6—C7—C8	177.85 (16)	C3—C4—C24—C25	53.7 (2)
C6—C7—C8—C9	0.2 (3)	C29—C24—C25—C26	-2.1 (3)
C7—C8—C9—C10	-0.3 (3)	C4—C24—C25—C26	174.47 (17)
C8—C9—C10—C11	0.0 (3)	C24—C25—C26—C27	1.1 (3)
C9—C10—C11—C6	0.5 (3)	C25—C26—C27—C28	0.3 (3)
C7—C6—C11—C10	-0.7 (3)	C25—C26—C27—Br2	-177.38 (13)
C5—C6—C11—C10	-178.20 (16)	C26—C27—C28—C29	-0.8 (3)

C3—C2—C12—C17	35.5 (3)	Br2—C27—C28—C29	176.94 (13)
C1-C2-C12-C17	-144.03 (18)	C27—C28—C29—C24	-0.2 (3)
C3—C2—C12—C13	-142.4 (2)	C25—C24—C29—C28	1.6 (3)
C1—C2—C12—C13	38.1 (2)	C4—C24—C29—C28	-174.91 (16)

пуигодеп-оони деотен у (Л,)	Hydrogen-bond	geometry (.	Å, °)
------------------------------	---------------	-------------	------	---

D—H···A	<i>D</i> —Н	$H \cdots A$	$D \cdots A$	D—H··· A
C28—H28···Br1 ⁱ	0.95	2.87	3.6920 (18)	146
C22—H22···Br2 ⁱⁱ	0.95	2.97	3.6386 (19)	129
C15—H15···Br1 ⁱⁱⁱ	0.95	3.03	3.8556 (18)	146
Symmetry codes: (i) $x+1$, y , z ; (ii) $-x+2$, $y-1/2$, $-z+1/2$; (iii) $-x+1$, $-y+1$, $-z+1$.				

